UNIT V

PRINCIPAL COMPONENT ANALYSIS (PCA)

SYLLABUS:

Data Matrices - Projections - SSE Goal - Singular Value Decomposition - Best Rank-k Approximation Principal Component Analysis - Computation of PCA Components Reduction of Two dimension data set to one dimension - Drawing Graph for PCA

5.1 Introduction

Principal Component Analysis (PCA) is a technique used to understand the Shape of a given Data.

Data Matrices

Let us consider a data in the matrix $A \in R^{n \times d}$ form having n rows and d columns. Here each row represents a data point and each column denote attribute of the data points. Also here d stands for dimension of the matrix A.

Examples of Data matrices:

1. Suppose 2 whether stations (located at different places) give temperatures at 3 different times in celcius degrees in the afternoon session. Then the Data matrix form shall be like this.
$2.30 \quad 3.00 \quad 3.30$
a_{1}
$a_{2}$$\quad\left(\begin{array}{lll}20 & 22 & 21 \\ 25 & 23 & 20\end{array}\right)$
2. Suppose n users rate d movies by giving scores between $1-5$. Then a_{i} represents an $\mathrm{i}^{\text {th }}$ user and d_{j} stands for $\mathrm{j}^{\text {th }}$ movie and $A_{i, j}$ stands for the score given by that user to the jth movie.

For example if $A \in R^{3 \times 4}$ and $A=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 5 & 3 & 2 & 1 \\ 3 & 1 & 2 & 4\end{array}\right)$. The structure of this matrix is $A=\left(\begin{array}{llll}A_{1,1} & A_{1,2} & A_{1,3} & A_{1,4} \\ A_{2,1} & A_{2,2} & A_{2,3} & A_{2,4} \\ A_{3,1} & A_{3,2} & A_{3,3} & A_{3,4}\end{array}\right)$. Then the A matrix represents 3 users $\left(a_{1}, a_{2}, a_{3}\right)$ give scores to 4 movies $\left(d_{1}, d_{2}, d_{3}, d_{4}\right)$ between 1 to 5 . Also the entry $A_{24}=1$ stands that second user has given score 1 to the $4^{\text {th }}$ movie.

5.2 Projections

Let $u \in R^{d}$ be a given unit vector. Let $p \in R^{d}$ be any data point. Then the dot product $\langle u, p\rangle$ is the norm of \mathbf{p} projected onto the line through \mathbf{u}. And $\langle u, p\rangle$ is a scalar.

Multiply this scalar $\langle u, p\rangle$ with u, then we get $\boldsymbol{\pi}_{\boldsymbol{p}}(\boldsymbol{u})=\langle\boldsymbol{u}, \boldsymbol{p}\rangle \boldsymbol{u}$, which is point on the line through u that is closest to data point p. This is a projection of a data point p onto u.

Let \mathbf{F} be a k dimensional space and $p \in R^{d}$ be any data point. The projection on to F of a data point $p \in R^{d}$ is given by the formula

$$
\boldsymbol{\pi}_{\boldsymbol{F}}(\boldsymbol{p})=\sum_{i=1}^{k}\left\langle\boldsymbol{u}_{i}, \boldsymbol{p}\right\rangle \boldsymbol{u}_{\boldsymbol{i}}
$$

Note:

Let F be a d dimensional space. Let the basis of F be $U_{F}=\left\{u_{1}, u_{2}, u_{3}, \ldots . u_{d}\right\}$ $u_{i}=e_{i}=(0,0,0, \ldots ., 1,0,0,0)$.
5.3 SSE Goal:

Our goal is to minimize the sum of squared errors. Let F be a k dimensional subspace and A be a given data matrix. Then Error Sum of Squares can be calculated by using the given formula.

$$
\operatorname{SSE}(\mathrm{A}, \mathrm{~F})=\sum_{a_{i} \in A}\left\|a_{i}-\pi_{F}\left(a_{i}\right)\right\|^{2}
$$

And k dimensional subspace F is $F^{*}=\arg \min \operatorname{SSE}(\mathrm{A}, \mathrm{F})$.

